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Groups are one of the most common structures in all of mathematics. They
appear in many fields even outside of algebra such as differential topology and
combinatorics, and have applications in areas such as chemistry and computa-
tional complexity theory. However, what defines a group, and how much play is
there in this definition? First, I’ll define a group as you may have seen before.

Definition 1. A group is defined as a set of elements G along with an operation
· satisfying the following axioms:

1. Associativity: For any x, y, z ∈ G, we have that (x · y) · z = x · (y · z);

2. Identity: There exists an element e ∈ G which we call the identity such
that for any x ∈ G, e · x = x = x · e;

3. Inverse: For any x ∈ G, there exists x−1 ∈ G such that x·x−1 = e = x−1·x.

Writing the · is annoying so from now on I’ll adopt the tradition of writing
x · y as xy. Similarly, I will use superscripts such as x2 = xx. Although the
definition of a group technically only includes a single binary operation · taking
two elements of G and producing a new element in G, we often think about
inversion of an element, x 7→ x−1, as an operation in its own right.

A Slight Relaxation

If we take a look at the Identity axiom in a group G, we notice that it is two-
sided. For any x ∈ G, we have that identity e satisfies ex = x = xe. What if
we relaxed this to a right-sided version? Define a right-handed version of the
Identity axiom where e is the element such that for any x ∈ G, we just have
that xe = x. In fact, let’s do the same for the Inverse axiom as well. It doesn’t
really make sense to do this for Associativity since that’s about three elements
being operated on.

Definition 2. A right-handed group is a set R with an operation · such that

1. Associativity: Same as in Definition 1;

2. RH-Identity: There exists an identity element e ∈ G such that for any
x ∈ G, xe = x;
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3. RH-Inverse: For any x ∈ G, there exists x−1 ∈ G such that x · x−1 = e.

Theorem 3. Every right-handed group R is also a group.

Proof. Clearly every group is also a right-handed group. So I will not write out
that portion of the proof.

Let R be a right-handed group. We need to show that the axioms Associa-
tivity, RH-Identity, and RH-Inverse in Definition 2 imply the normal two-sided
Identity and Inverse axioms in Definition 1. First we show that any element
a ∈ R satisfying a2 = a must be the right-handed identity element e. Clearly
the identity satisfies this with e2 = ee = e. If a is such an element, then it has
a right-inverse a−1 where aa−1 = e. Thus, we have that

a = ae = aaa−1 = a2a−1 = aa−1 = e

and a = e.
Then, for any element x ∈ R, we know it has a right inverse x−1 satisfying

xx−1 = e. Thus, for all x ∈ R we have that

xx−1xx−1 =
(
xx−1

)2
= e2 = e = xx−1.

Now consider x−1xx−1x. We have that

x−1xx−1x = x−1
(
xx−1

)
xx−1x

= x−1xx−1xx−1x

= x−1
(
xx−1xx−1

)
x

= x−1
(
xx−1

)
x = x−1x.

But now we have that x−1xx−1x = x−1x. By the above, this means that
x−1x = e and that x−1 is not just a right-handed inverse, but also a left-handed
inverse.

Note that nowhere in the above proof did we assume that e was a left-handed
identity, just that e is a right-handed identity. We now prove that e is also a
left-handed identity. Let x ∈ R. We know that x has a (left and right)-inverse
x−1 so x−1x = e = xx−1. Since xe = x, we have that

x = xe = xx−1x = ex.

Thus, e is also a left-handed identity. Overall we have shown that R satisfies
all axioms of a group given in Definition 1 meaning R is a group.

Pretty much the same proof works if you define the analogous left-handed
group and want to show that left-handed groups are also equivalent to groups.
Thus, there is no distinction between groups and their left or right counterparts.
While Definition 2 is different to Definition 1, morally it doesn’t feel that dif-
ferent. Can we redefine groups in more interesting ways? It turns out you can!
I will show you how groups can be defined in terms of equations (even a single
equation), in terms of a new operation, and even in terms of literal abstract
nonsense.
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Axioms are Equations

One major motivation of studying group theory is studying algebraic equations.
Following this motivation, we can formulate groups as satisfying certain equa-
tions. This result is not from anywhere in particular and is sort of a folklore
result.

Definition 4. An equational group is a set E with elements satisfying the
following axioms:

1. E-Product: For every element x, y ∈ E there exists a unique element
xy ∈ E;

2. E-Associativity: For every x, y, z ∈ E, the equation a(bc) = (ab)c is true;

3. E-Solution: For every x, y ∈ E, there exists at least one element a and
one element b in E such that the equations xa = y and bx = y are true.

Theorem 5. Equational groups are equivalent to groups.

Proof. Consider a group G. By the definition of product in a group, G satisfies
the axiom E-Product. Similarly, multiplication in a group G is associative and
so G satisfies the axiom E-Associativity. Finally, let x, y ∈ G. Then a = x−1y
and b = yx−1, both of which exist since x and y exist, shows that G satisfies
the E-Solution. Thus groups are also equational groups.

Now let E be an equational group. Note that the definition of equational
group does not explicitly define an operation like in the definition of group
(Definition 1). We will give E an operation using axiom E-Product to define
x · y = xy for all x, y ∈ E. This is sufficient since E-Product not only says
xy exists, but is unique meaning our operation is a well-defined function. This
product satisfies the axiom Associativity of a group since we have the axiom
E-Associativity.

We want to show that certain elements, identities and inverses, exist. These
elements satisfy certain equations as defined, so we should use the axiom E-
Solution. To show that the identity element exists, let x, y ∈ E. Then by E-
Solution, there exists left and right identity elements a and b such that xa = x
and by = y. Similarly, there exists elements a′ and b′ such that ya′ = a and
b′x = b. Thus

b = b′x = b′xa = ba = bya′ = ya′a.

Thus, a = b is our multiplicative identity element, which we will now call e. This
is the identity element for all of E since x and y were arbitrary. The intutition
for this proof occurs in the middle, with ba, reflecting that e2 = e. We saw this
in the proof of Theorem 3.

To see that inverses exist, we immediately have by E-Solution that for x ∈ E,
there exists elements a and b such that xa = e = bx. Thus we have that

b = be = bxa = ea = a.
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Thus, left and right inverses for each element in E exist and are equivalent
yielding that every element in E has an inverse x−1 = a = b. Again the
intuition here is that x−1xx−1 = x by grouping with parentheses either the
left two elements or the right two elements. Overall we have that groups are
equivalent to equational groups.

. . . is Multiplication is Division is Multiplication is Division
is . . .

Typically, the definition of the binary operation · : G × G → G for a group is
thought of in a multiplicative manner: combine two elements x and y to get a
new one xy. But can we define groups a divisive manner: tearing y off of x and
getting an element z representing whatever is leftover? Since we have notions
of both multiplication and inversion in our normal definition (Definition 1) of
a group, we can indeed do this. I found this definition during my research for
this post from this MathOverflow post.

Definition 6. A Division Group is a set D along with an operation / satisfying

1. D-Inversion: There exists a unique element e ∈ D such that for all x ∈ D,
we have that x/x = e;

2. D-Identity: For all x ∈ D and the element e, we have that x/e = x;

3. D-Cancellation: For any x, y, z ∈ D, We have that (x/z)/(y/z) = x/y.

Theorem 7. Division groups are equivalent to groups.

Proof. Showing that a group is a division group is simple. Intuitively, division
is just multiplication by the inverse and so we can take all of the axioms of
Definition 6 and replace x/y with xy−1 and see that the group axioms imply
the division group axioms.

Now suppose we have a division group D. We first need to translate from /
to the operations multiplication and inversion. Let xy = x/(e/y) and x−1 = e/x
for all x, y ∈ D. Then we also claim that our multiplicative identity is e ∈ D.
Then all that is left is to check that the axioms in Definition 1 are satisfied by
this translation. These are all just computations of various levels of tedium and
juggling of parentheses. Let x, y, z ∈ D. For associativity we have

(xy)z = (x/(e/y))/(e/z) (Translation)

= (x/(e/y))/((e/z)/e) (D-Identity)

= (x/(e/y))/(((e/z)/y)/(e/y)) (D-Cancellation)

= x/((e/z)/y) (D-Cancellation)

= x/(((e/z)/(e/z))/(y/(e/z))) (D-Cancellation)

= x/(e/(y/(e/z))) (D-Inversion)

= x(yz). (Translation)
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Fortunately, proving identity and existence of inversion is simpler:

ex = e/(e/x) = (x/x)/(e/x) = x/e = x = x/e = x/(e/e) = xe

xx−1 = x/(e/(e/x)) = x/((x/x)/(e/x)) = x/(x/e) = x/x = x = (e/x)/(e/x) = x−1x.

Thus, division groups are equivalent to groups.

An ever-so-slightly shorter proof would have been proving directly that di-
vision groups are equivalent to right-handed groups and then invoking the fact
that right-handed groups are equivalent to groups.

One Law to Rule Them All

There is a way to combine ideas from the previous two notions and use a single
equation to define what a group is using division. This is due to Graham Higman
and B.H. Neumann in their paper Groups as groupoids with one law . However,
I will build off of an easier to understand exposition from Neumann’s paper
Another Single Law for Groups. First a primer on reverse Polish notation.
This notation is common in the early study of these axiomatic systems, and
so I will use it here. It is a way of writing functions and their inputs without
parentheses. If we wanted to notate the multiplication of two numbers x and y,
rather than writing x · y in what is called infix notation, we would write xy· for
reverse Polish notation. If you know how many arguments your functions take,
then this removes the need for parentheses.

In a group, x/y = xy−1 where the operation right division / is from Defini-
tion 6. Here we are using that division groups are equivalent to groups (The-
orem 7). We will notate right division, multiplication, and inversion in reverse
Polish notation with the letters ρ, µ, and ι:

xyρ = x/y, xyµ = x · y, xι = x−1.

Verify for yourself that the following identities hold.

xι = xxρxρ, xyµ = xyyρyρρ.

It will be easier to see if you notice that e = xxρ and use some parentheses.
Now imagine a setG with the operation right division ρ, outside of all context

of inversion and multiplication. Then we have the following theorem which is
the main result from Graham Higman and B.H. Neumann’s work:

Theorem 8. A set G with right division ρ satisfying the following for all
x, y, z ∈ G is a group:

xxxρyρzρxxρxρzρρρ = y.

I will omit the proof because it is far far too long to repeat.
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Abstract Nonsense

Category theory, also known as abstract nonsense by many, is a powerful frame-
work for understanding various structures. A category is a collection of objects
and functions, called morphisms, between these objects. Formally, little other
structures exists:

Definition 9. A category C is a collection of objects ob(C) and morphisms
hom(C) between these objects. If we have objects A,B ∈ ob(C), a morphism f
from A to B is denoted f : A → B. Intuitively morphisms are functions, but they
don’t have to be! We also have an operation ◦ called composition where if f : A →
B and g : B → C are morphisms, then we have a morphism g ◦f : A → B where
we apply the morphism g after f . This composition is associative, meaning that
if we also have a morphism h : C → D, then (h ◦ g) ◦ f = h ◦ (g ◦ f). We also
require that a special identity morphism idA exists for every object A ∈ ob(C)
such that idB ◦f = f = f ◦ idA for every morphism f : A → B.

This definition is somewhat reminiscent of a group! For example, the proof
that the identity morphism in a category is unique for each object is very much
the same as the proof that the identity in a group is unique. Consider a group
G and an element x ∈ G. Then we have a group homomorphism called left
multiplication by x:

Lx : G → G

g 7→ xg

Right multiplication by x is defined in the way you expect.
This allows us to view a single group in a category-theoretic manner. Fix

your favorite group G. Consider the not-yet-proven-to-be-category G where the
only object is G, so ob(G) = {G}. Then let hom(G) be all left-multiplications
and right-multiplications in G. So hom(G) is the set of all Lx : G → G and
Rx : G → G for all x ∈ G. I claim that G is a category.

Composition of morphisms is just multiplication by two (or more) elements
at once rather than just one element. For any elements x, y ∈ G we have
Lx ◦ Ly = Lxy and Rx ◦ Ry = Ryx. Associativity of composition then follows
from the fact that multiplication in a group is associative. As one may expect,
we have that the identity morphism for G, idG, is Le = Re. Indeed, composing
with Le before or after Lx for any x ∈ G yields Lx and similarly for Rx. Thus,
we have a category.

Notice, however, that we did not use the fact that every element x ∈ G has
an inverse x−1. We have that Lx ◦ Lx−1 = Le = Rx ◦ Rx−1 . Thus, every one
of our morphisms in G is an isomorphism: every morphism has an inverse. Let
us take the definition of a category (Definition 9) and add the requirement that
inverses exist.

Definition 10. A category G where for every morphism f : A → B, there exists
a morphism f−1 : B → A such that f−1 ◦ f = idA and f ◦ f−1 = idB is called a
groupoid.
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Above we have defined a group as a groupoid with one object.
In fact, we can use this to construct groups, rather than just identifying

groups as groupoids. Lets construct a new groupoid Sn. If we let our single
object be ob(Sn) = { [n] } = { {1, . . . , n} } and let hom(Sn) be all possible
permutation of [n] then we have constructed the symmetric group on n elements,
Sn, as a groupoid. If you know a little algebraic topology, then you can also
construct the fundamental group of a topological spaceX with a fixed base point
x ∈ X by considering your morphisms as the classes of loops x → x. Groupoids
in general are cool objects which nicely generalize properties of groups, but
perhaps I’ll discuss that another day.

View this as a webpage.
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